If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+4b-100=0
a = 1; b = 4; c = -100;
Δ = b2-4ac
Δ = 42-4·1·(-100)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{26}}{2*1}=\frac{-4-4\sqrt{26}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{26}}{2*1}=\frac{-4+4\sqrt{26}}{2} $
| 2x-(x+3)=12 | | 25(-x)=-50 | | 25(-x)=-5 | | 4x=-(28) | | 4x+2=16+6 | | 28-(3x)=0 | | 2(x+1)-3(x+4)=0 | | 19x-8=13x+15 | | 16+6w=8w | | 5a+110=-10 | | 2x-(-13)=7 | | 7.5x^2+9.5=0 | | 13(2x+5)=11(3x+4) | | -1/4u+2=-2/3u-7/2 | | 8.5=6.3-(w)/(2) | | 42=i/3 | | 17x+6=39 | | -16t^2+12t+210=0 | | 41=4m+5 | | 8x4=12+2 | | 4=11-5k | | 2x-(2x+2)=22 | | 6=1/5y-1 | | 16x+4=52 | | 27x+135=810 | | 15x+37x=400 | | 55x-55=2585 | | 14x=135 | | 3(w+6)=9w+36 | | 19x=120 | | 2(y+5)-7y=-25 | | 19x+60=180 |